Legendrian links and the spanning tree model for Khovanov homology

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Legendrian links and the spanning tree model for Khovanov homology

The Khovanov homology has led to many interesting new developments in knot theory and related fields. See Lee [4, 5], Ng [6], Plamenevskaya [7] and Rasmussen [8] for examples. It is still very difficult to compute the Khovanov homology in general. Recently, A Champanerkar and I Kofman [2] and, independently, S Wehrli [11] constructed a spanning tree model for the Khovanov homology based on the ...

متن کامل

Spanning Trees and Khovanov Homology

The Jones polynomial can be expressed in terms of spanning trees of the graph obtained by checkerboard coloring a knot diagram. We show there exists a complex generated by these spanning trees whose homology is the reduced Khovanov homology. The spanning trees provide a filtration on the reduced Khovanov complex and a spectral sequence that converges to its homology. For alternating links, all ...

متن کامل

Bar-natan’s Khovanov Homology for Coloured Links

Using Bar-Natan’s Khovanov homology we define a homology theory for links whose components are labelled by irreducible representations of Uq(sl2). We then compute this explicitly.

متن کامل

A Legendrian Thurston–bennequin Bound from Khovanov Homology

We establish an upper bound for the Thurston–Bennequin number of a Legendrian link using the Khovanov homology of the underlying topological link. This bound is sharp in particular for all alternating links, and knots with nine or fewer crossings.

متن کامل

Khovanov-rozansky Homology of Two-bridge Knots and Links

We compute the reduced version of Khovanov and Rozansky’s sl(N) homology for two-bridge knots and links. The answer is expressed in terms of the HOMFLY polynomial and signature.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Algebraic & Geometric Topology

سال: 2006

ISSN: 1472-2739,1472-2747

DOI: 10.2140/agt.2006.6.1745